skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "O'Dowd, Niall_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Study examines binder deposition methods (bulk vs. selective printing) and sintering atmospheres (vacuum vs. H2) on binder jetted 316 L stainless steel components. The density of the H2-sintered specimens was found to be lower (up to 5%) compared to the vacuum-sintered parts with the final density of 99.7%. Grain size analysis indicated smaller grains in the H2-sintered parts (∼26 μm) compared to vacuum-sintered condition (∼33 μm) in the bound area which could be attributed to the presence of residual pores that impeded grain growth. The H2-sintered specimens exhibited an elongation of 25% and an ultimate tensile strength (UTS) of 460 MPa, whereas the vacuum-sintered parts displayed an elongation of 70% and a UTS of 550 MPa. Fractography analysis using microscopy and micro-computed tomography revealed ductile fracture in the vacuum-sintered samples, while the H2-sintered parts exhibited a combination of brittle and ductile fracture due to remnant pores in the microstructure. 
    more » « less